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ELLIPTIC EQUATIONS IN WEIGHTED BESOV SPACES ON
ASYMPTOTICALLY FLAT RIEMANNIAN MANIFOLDS

UWE BRAUER AND LAVI KARP*

Abstract. This paper deals with the applications of weighted Besov spaces to elliptic
equations on asymptotically flat Riemannian manifolds, and in particular to the solutions
of Einstein’s constraints equations. We establish existence theorems for the Hamiltonian
an momentum constraints with constant mean curvature and with a background metric
which satisfies very low regularity assumptions. These results extend the regularity results
of Holst, Nagy and Tsogtgerel about the constraint equations on compact manifolds in the
Besov space Bsp,p [18], to asymptotically flat manifolds. We also consider the Brill–Cantor
criterion in the weighted Besov spaces. Our results improve the regularity assumptions
on asymptotically flat manifolds [13, 23], as well as they enable us to construct the initial
data for the Einstein–Euler system.

1. Introduction

Much attention has been devoted to solutions of the Einstein constraint equations in asymp-
totically flat space–times by means of weighted Sobolev spaces as an essential tool. These
spaces are defined by the norm

(1.1) ‖u‖m,p,δ =

∑
|α|≤m

∫ ∣∣(1 + |x|)δ+|α|∂αu
∣∣p dx

 1
p

,

and denoted by W p
m,δ.

Elliptic equations on W p
m,δ spaces were first considered by Nirenberg and Walker in [25].

This paper led to numerous publications dealing with its applications to the solutions of
Einstein constraint equations in asymptotically flat space–times. Some significant contri-
butions include the papers of Bartnik [3], Cantor [8, 9], Choquet–Bruhat and Christodoulo
[12] and Christodoulou and O’Murchadha [15]. Afterward the regularity assumptions were
improved, by Maxwell in the vacuum case and with boundary conditions [23], and by
Choquet–Bruhat, Isenberg and Pollack for the Einstein–scalar field gravitational constraint
equations [13]. In both papers they obtained that the metric is locally in W p

2 when p > n
2
.
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In the case p = 2, Maxwell constructed low regularity solutions of the vacuum Einstein
constraint equations with a metric in the Bessel potential spaces Hs

loc with s > n
2

[24].

The extension of the W p
m,δ-spaces to the weighted Besov spaces of fractional order was

carried out by Triebel [29] (see definition 2.1). We denote these spaces by W p
s,δ, where

s, δ ∈ R and p ∈ [1,∞). In this paper we are applying the weighted Besov spaces to the
study of elliptic equations on asymptotically flat Riemannian manifolds. This enable us to
improve regularity results. We also construct the initial data for the Einstein fields which
are coupled to a perfect fluid, and whose density either has a compact support or falls off
at infinity in an appropriate manner.

On compact manifolds one seeks solutions to the Einstein constraint equations in the
unweighted Sobolev spaces. Choquet–Bruhat obtained solutions with metric in W p

2 and
for p > n

2
[11]. Later Maxwell improved the regularity in the Bessel potential spaces Hs for

s > n
2

[22]. Holst Nagy and Tsogtgerel [18] study solutions of the Einstein constraints in the
Besov space Bs

p,p (see (2.1)). Among their results is the existence of weak solutions to the
Hamiltonian and momentum constraints in the Besov space Bs

p,p with s ∈ (n
p
,∞) ∩ [1,∞)

and p ∈ (1,∞). Thus their results cover [11] in the case s = 2 and [22] in the case p = 2.

The present paper extends the regularity results of Holst Nagy and Tsogtgerel on compact
manifolds [18], to asymptotically flat Riemannian manifolds by using the weighted Besov
spaces W p

s,δ (see (2.1)). We establish existence results for the Hamiltonian constraint
with constant mean curvature (CMC) and the momentum constraint under the conditions
s ∈ (n

p
,∞) ∩ [1,∞), δ ∈ (−n

p
, n − 2 − n

p
) and for all p ∈ (1,∞). The Brill–Cantor

condition suggests a criterion, similarly to the Yamabe number, under which a given metric
in asymptotically flat manifold can be rescaled to yield a conformal metric with zero
scalar curvature (see §5). For an enlightening discussion about this criterion see [17]. The
equivalence between Brill–Cantor condition and a flat metric was solved for the integer
order weighted Sobolev spaces and for p > n

2
in [13, 23]. We treat the Bill–Cantor condition

in the weighted Besov spaces W p
s,δ and establish its equivalent to a metric with zero scalar

curvature for s ∈ (n
p
,∞)∩ [1,∞), δ ∈ (−n

p
, n− 2− n

p
) and all p ∈ (1,∞). To conclude, our

results generalize [7, 24] to p ∈ (1,∞), and improve the regularity of [13, 23].

The outline of the paper is as follows. In the first part of Section 2 we sketch Triebel’s
construction of the weighted Besov spaces and state their main properties. In the second
part we establish tools which are needed for PDE in these spaces, including embeddings,
pointwise multiplication and Moser type estimates.

Section 3 is devoted to elliptic linear systems on asymptotically flat Riemannian manifolds.
In the first subsection we establish a priori estimates for second order elliptic operators
with coefficients in the W p

s,δ spaces and show that these system are semi–Fredholm opera-
tors. This property has an essential role in the studying of the non–linear equations. The
definition of asymptotically flat of the class W p

s,δ is done in subsection 3.2. In subsection
3.3 we are studying of weak solutions that meet very low regularity requirements. This de-
mands a special attention to the extension of L2-bilinear forms to the product of W p

s,δ with
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its dual on the manifold. Here we follow the ideas of [18, 22] and establish the continuous
extensions (Propositions 3.9 and 3.10). We then define weak solutions on the manifolds
and derive a weak maximum principle.

In Section 4 we prove the existence and uniqueness theorem of a semi–linear equation, where
the linear part is the Laplace–Beltrami operator of an asymptotically flat Riemannian
manifold. The method of sub and super solution is the common method for these types
of non–linearity, however, we shall implement Cantor’s homotopy argument [9] in the
weighted Besov spaces.

Section 5 discusses the Brill–Cantor criterion. We show that condition (5.1) is necessary
and sufficient for the existence of a metric in W p

s,δ and with zero scalar curvature, when
s ∈ (n

p
,∞) ∩ [1,∞), δ ∈ (−n

p
,−2 − n + n

p
) and all p ∈ (1,∞). The main difficulty is

the estimate of the Yamabe’s functional (5.1) in terms of the relevant W p
s,δ-norms. Here

we use a slightly advanced form of pointwise multiplication of three functions in W p
s,δ (see

Proposition 2.11). Finally, in Section 6 we are considering the construction of initial data
for the Einstein–Euler system. In this system the equations for the gravitational fields
are coupled to a perfect fluid and certain relations between the matter variables and the
fluid variables must be fulfilled. In [7] the authors discussed this problem in details in the
weighted Hilbert spaces W 2

s,δ. Here we extend these results to the W p
s,δ spaces.

Some notations: For p ∈ (1,∞), p′ will stand for the dual index to p, that is 1
p

+ 1
p′

= 1.

The scaling of a distribution u with a positive number ε is denoted by uε. A Riemannian
manifold is denoted by M and g = gab is a metric on M, ∇u is the covariant derivative
and |∇|2g = gab∂au∂bu, where gab is the inverse matrix of gab. Latin indexes a, b take the
values 1, . . . , n and the dimension n is greater or equal to two throughout this paper. We
will use the notation A . B to denote an inequality A ≤ CB where the positive constant
C does not depend on the parameters in question.

2. The weighted Besov spaces

2.1. The construction of the Spaces W p
s,δ. In this subsection we sketch Triebel’s con-

struction of the weighted Besov spaces. We start with fixing the notations and recalling
the definition of Besov spaces Bp

p,p [4, 31]. Let S denote the Schwartz class of rapidly
decreasing functions in Rn and S ′ its dual. Let {φj} be a smooth dyadic partition of unity
of Rn such that

∑∞
j=0 φj(ξ) = 1, and F(u) be the Fourier transform of a distribution u.

For s ∈ R and 1 ≤ p <∞,

(2.1) W p
s := Bs

p,p =

u ∈ S ′ : ‖u‖W p
s

:=

(
∞∑
j=0

2jsp
∥∥F−1(φjF(u))

∥∥p
Lp

)1/p

<∞

 .

For the construction of the weighted-W p
s space we also use a dyadic partition of unity,

which is denoted by {ψ}∞j=0, and is such that the support of ψj is contained in the dyadic

shell {x : 2j−2 ≤ |x| ≤ 2j+1}, ψj(x) = 1 on {x : 2j−1 ≤ |x| ≤ 2j} for j = 1, 2, ..., while ψ0
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has a support in the ball {x : |x| ≤ 2} and ψ0(x) = 1 on {x : |x| ≤ 1}. In addition we
require that {ψj}∞j=0 ⊂ C∞0 (Rn) and satisfies the inequalities

(2.2) |∂αψj(x)| ≤ Cα2−|α|j,

where the constant Cα does not depend on j. For a positive number ε we denote the scaling
u(εx) by uε(x).

Definition 2.1 (Weighted Besov spaces W p
s,δ). Let s, δ ∈ R and p ∈ [1,∞), the W p

s,δ(Rn)-
space is the set of all tempered distributions u such that the norm

(2.3) ‖u‖p
W p
s,δ(Rn)

:=
∞∑
j=0

2(δ+n
p

)pj
∥∥∥(ψju)(2j)

∥∥∥p
W p
s

.

is finite.

The W p
s,δ-norm of distributions in an open set Ω ⊂ Rn is given by

‖u‖W p
s,δ(Ω) = inf

f |Ω=u
‖f‖W p

s,δ(Rn) .

The following basic properties were established in Triebel [29, 30].

Theorem 2.2 (Triebel, Basic properties). Let s, δ ∈ R and p ∈ (1,∞).

(a) The space W p
s,δ(Rn) is a Banach space and different choices of a dyadic resolution

{ψj} which satisfies (2.2) result in equivalent norms.
(b) C∞0 (Rn) is a dense subset in W p

s,δ(Rn).

(c) The dual space of W p
s,δ(Rn) is W p′

−s,−δ(Rn), where p′ = p
(p−1)

.

(d) Interpolation (real): Let 0 < θ < 1, s = θs0 + (1 − θ)s1, δ = θδ0 + (1 − θ)δ1 and
1/p = θ/p0 + (1− θ)/p1, then(

W p1

s1,δ1
(Rn),W p2

s2,δ2
(Rn)

)
θ,p

= W p
s,δ(R

n).

Remark 2.3. A distribution f belongs to W p′

−s,−δ(Rn) if and only if there exists a positive
constant C such that

|〈f, ϕ〉| ≤ C‖ϕ‖W p
s,δ(Rn) ∀ ϕ ∈ W p

s,δ(R
n).

It follows from (b) and (c) above that

(2.4) ‖f‖
W p′
−s,−δ(Rn)

= sup{|〈f, ϕ〉| : ‖ϕ‖W p
s,δ(Rn) ≤ 1, ϕ ∈ C∞0 (Rn)}.

For s ≥ 0 the Besov norm (2.1) is equivalent to the norm of the fractional Sobolev spaces
(see e.g. [4, Ch. 6], [28, §35] or [31]). Their norm is defined as follows. Let m be a
nonnegative integer and 0 < λ < 1, then

‖u‖ps,p =


∑
|α|≤m ‖∂αu‖

p
Lp , s = m∑

|α|≤m

‖∂αu‖pLp +
∑
|α|=m

∫∫
|∂αu(x)− ∂αu(y)|p

|x− y|n+λp
dxdy, s = m+ λ .
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Thus a natural extension of the spaces defining by the norm (1.1) to spaces of fractional
order when s ≥ 0 is
(2.5)

‖u‖ps,p,δ =



∑
|α|≤m

‖(1 + |x|)δ+|α|∂αu‖pLp , s = m∑
|α|≤m

‖(1 + |x|)δ+|α|∂αu‖pLp+∑
|α|=m

∫∫
|(1 + |x|)δ+m+λ∂αu(x)− (1 + |y|)δ+m+λ∂αu(y)|p

|x− y|n+λp
dxdy,

s = m+ λ

.

In order to show the equivalence between the norms (2.3) and (2.5) we introduce the norm
of the homogeneous norm, that is,

‖u‖ps,p,hom =


∑
|α|=m ‖∂αu‖

p
Lp , s = m∑

|α|=m

∫∫
|∂αu(x)− ∂αu(y)|p

|x− y|n+λp
dxdy, s = m+ λ

and recall the equivalence ‖u‖ps,p ∼ ‖u‖
p
Lp + ‖u‖ps,p,hom. Using this equivalence and the

dyadic resolution {ψj}, Triebel [29, Theorem 1] proved that

(2.6) ‖u‖ps,p,δ ∼
∞∑
j=0

2δpj‖ψju‖pLp + 2(δ+s)pj‖ψju‖ps,p,hom.

Moreover, he showed that the constants of the above equivalence depend only on s, δ, p,
the dimension and the constants Cα of inequalities (2.2).

Taking into account the homogeneous properties, that is, ‖(ψju)2j‖pLp = 2−jn‖ψju‖pLp and
‖(ψju)2j‖ps,p,hom = 2−j(n−sp)‖ψju‖ps,p,hom, and combining them with the equivalence (2.6),
we obtain

‖u‖ps,p,δ ∼
∞∑
j=0

2(δ+n
p

)pj
(
‖(ψju)2j‖pLp + ‖(ψju)2j‖ps,p,hom

)
∼

∞∑
j=0

2(δ+n
p

)pj‖(ψju)2j‖ps,p ∼
∞∑
j=0

2(δ+n
p

)pj‖(ψju)2j‖pWs,p
= ‖u‖p

W p
s,δ(Rn)

.

This proves the following theorem of Triebel [29].

Theorem 2.4 (Triebel, Equivalence of norms). Let s ≥ 0, 1 ≤ p <∞ and −∞ < δ <∞.
Then the norms (2.3) and (2.5) are equivalent. In particular, when s is a non–negative
integer, then the norm (2.3) is equivalent to the norm (1.1).

2.2. Some Properties of W p
s,δ(Rn)-spaces. In this subsection we establish several useful

tools for PDEs on these spaces, including embeddings, pointwise multiplications, fractional
powers and Moser type estimates.
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Proposition 2.5. If u ∈ W p
s,δ(Rn), then

(2.7) ‖∂iu‖W p
s−1,δ+1(Rn) ≤ C‖u‖W p

s,δ(Rn),

where the constant C depends on the constant of the equivalence of Theorem 2.4.

Proof. If s ≥ 1 is , then (2.5) implies ‖∂iu‖s−1,p,δ+1 ≤ ‖u‖s,p,δ, so (2.7) follows from Theorem
2.4 in that case. For s ≤ 0, we have by the previous stage

|〈∂iu, ϕ〉| = |〈u, ∂iϕ〉| ≤ ‖u‖W p
s,δ(Rn)‖∂iϕ‖W p′

−s,−δ(Rn) ≤ C‖u‖W p
s,δ(Rn)‖ϕ‖W p′

−s+1,−δ−1(Rn)

for all ϕ ∈ C∞0 (Rn). Hence by (2.4), ‖∂iu‖W p
s,δ(Rn) ≤ C‖u‖W p

s+1,δ−1(Rn). For the remaining

value of s we use interpolation in order to obtain (2.7).

�

Proposition 2.6. Let χR ∈ C∞(Rn) be a cut–off function such that χR(x) = 1 for |x| ≤ R,
χR(x) = 0 for |x| ≥ 2R and |∂αχR| ≤ cαR

−|α|. Then for δ′ < δ there holds

‖(1− χR)u‖W p
s,δ(Rn) . R−(δ−δ′)‖u‖W p

s,δ′ (R
n).

Proof. Let J0 be the smallest integer such that R ≤ 2J0−2. Then (1 − χR)ψj = 0 for
j = 0, 1, ..., J0 − 1, and hence

‖(1− χR)u‖p
W p

s,δ′ (R
n)

=
∞∑
j=J0

2(δ′+n
p )pj ∥∥(ψj(1− χR)u)2j

∥∥p
W p
s

.
∞∑
j=J0

2−(δ−δ′)pj2(δ′+n
p )pj ∥∥(ψju)2j

∥∥p
W p
s
. 2−(δ−δ′)pJ0

∞∑
j=J0

2(δ′+n
p )pj ∥∥(ψju)2j

∥∥p
W p
s

.
(
R−(δ−δ′)‖u‖W p

s,δ(Rn)

)p
.

�

The next proposition deals with embeddings. It concerns also the embedding into Cm
β (Rn),

the weighted space of continuously differentiable functions, where m is a nonnegative in-
teger, β ∈ R and with the norm

‖u‖Cmβ (Rn) =
∑
|α|≤m supRn

(
(1 + |x|)β+|α||∂αu(x)|

)
.(2.8)

Proposition 2.7 (Embedding).

(a) Let s1 ≤ s2 and δ1 ≤ δ2, then the inclusion W p
s2,δ2

(Rn)→ W p
s1,δ2

(Rn) is continuous.

(b) Let s1 < s2 and δ1 < δ2, then the embedding i : W p
s2,δ2

(Rn)→ W p
s1,δ1

(Rn) is compact.

(c) Let s > n
p

+m and δ+ n
p
≥ β, then the embedding W p

s,δ(Rn)→ Cm
β (Rn) is continuous.
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Proof. From the definitions of the norms (2.1) and (2.3), we see that they are increasing
functions of both s and δ. Hence ‖u‖W p

s1,δ1
(Rn) ≤ ‖u‖W p

s2,δ2
(Rn) and that proves (a). To

prove (b), we let N be a positive integer and set iN(u) =
∑N

j=0(ψju)2j . Since iN(u) has

support in {|x| ≤ 2N+2} and s1 < s2, iN is a compact operator from W p
s2

to W p
s1

(see e.g.
[16]). In addition, by Proposition 2.6 we have

‖iN(u)− i(u)‖W p
s1,δ1

(Rn) . 2−N(δ2−δ1)‖u‖W p
s2,δ2

(Rn).

Thus the embedding i is a norm limit of compact operators, hence it is itself compact.

We turn now to (c). Assume first that m = 0 and s > n
p
, then supRn |u(x)| . ‖u‖W p

s
(see

e. g. [28, §32]). Applying it term–wise to the norm (2.3), we have

sup
Rn

(1 + |x|)β|u(x)| ≤ 2β sup
j≥0

(
2βj sup

Rn
|ψj(x)u(x)|

)
=2β sup

j≥0

(
2βj sup

Rn
|ψj(2jx)u(2jx)|

)
. 2β sup

j≥0

(
2βj‖(ψju)2j‖W p

s

)
.2β sup

j≥0

(
2(δ+n

p
)j‖(ψju)2j‖W p

s

)
. 2β‖u‖W p

s,δ(Rn).

(2.9)

If m ≥ 1 and |α| ≤ m, then ∂αu ∈ W p
s−|α|,δ+|α|(R

n) by Proposition 2.5. So applying (2.9) to

∂αu with δ′ = δ + |α| and β′ = β + |α|, we obtain ‖∂αu‖C0
β+|α|(R

n) ≤ C‖∂αu‖W p
s−|α|,δ+|α|(R

n).

�

For further applications we discuss the construction of the sequence {ψj} appearing in
Definition 2.1. Let h be a C∞(R) function such that h(t) = −1 for t ≤ 1

4
, h(t) = 0 for

1/2 ≤ t ≤ 1 and h(t) = 1 for 2 ≤ t. Let

(2.10) g(t) =

{
e
−t2

(1−t2) , |t| < 1
0, |t| ≥ 1

.

Then the functions ψj(x) = g(h(2−j|x|)) satisfy the requirements of the dyadic resolution
above Definition 2.1. Moreover, for any positive γ, ψγj (x) = gγ(h(2−j|x|)) and from (2.10)
we see that there are two constants C1(γ, α) and C2(γ, α) such that

C1(γ, α)|∂αψj(x)| ≤ |∂αψγj (x)| ≤ C2(γ, α)|∂αψj(x)|
for any multi–index α, and these inequalities are independent of j. Therefore the family
{ψγj } satisfies condition (2.2) and hence by Theorem 2.2 (a) we obtain:

Proposition 2.8. Let γ be positive number, then

(2.11) ‖u‖p
W p
s,δ(Rn)

'
∞∑
j=0

2(δ+n
p

)pj
∥∥∥(ψγj u)(2j)

∥∥∥p
W p
s

.

By means of Proposition 2.8 we establish multiplication and the fractional power properties
of the weighted Besov spaces.
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Proposition 2.9. Assume s ≤ min{s1, s2}, s1 + s2 > s+ n
p
, s1 + s2 ≥ n ·max{0, (2

p
− 1)}

and δ ≤ δ1 + δ2 + n
p
, then the multiplication

W p
s1,δ1

(Rn)×W p
s2,δ2

(Rn)→ W p
s,δ(R

n)

is continuous.

Proof. Let u ∈ W p
s1,δ1

(Rn) and v ∈ W p
s2,δ2

(Rn), then by the corresponding unweighed
embedding results, we have

‖
(
ψ2
juv
)

2j
‖W p

s
. ‖ (ψju)2j ‖W p

s1
‖ (ψjv)2j ‖W p

s2
.

For the proof of these types of results see [26, §4.6.1]. Set aj = ‖ (ψju)2j ‖
p
W p
s2

and bj =

‖ (ψjv)2j ‖
p
W p
s2

, then by Proposition 2.8 and the Cauchy Schwarz inequality we have

‖uv‖p
W p
s,δ(Rn)

.
∞∑
j=0

2(δ+n
p )pj

∥∥∥(ψ2
juv
)

2j

∥∥∥p
W p
s

.
∞∑
j=0

2(δ1+n
p

+δ2+n
p )pjajbj

.

(
∞∑
j=0

(
2(δ1+n

p )pjaj

)2
) 1

2
(
∞∑
j=0

(
2(δ2+n

p )pjbj

)2
) 1

2

.

(
∞∑
j=0

2(δ1+n
p )pjaj

)(
∞∑
j=0

2(δ2+n
p )pjbj

)
. ‖u‖p

W p
s1,δ1

(Rn)
‖v‖pWs2,δ2

(Rn).

�

Corollary 2.10. Let s > n
p

and δ ≥ −n
p
, then the space W p

s,δ is an algebra.

Proposition 2.9 can be extended to a multiplication of three functions and with relaxed
conditions on the δ’s.

Proposition 2.11. Assume s ≤ min{s1, s2}, s1 + s2 > s+ n
p
, s1 + s2 ≥ n ·max{0, (2

p
− 1)}

and δ ≤ δ1 + δ2 + δ3 + 2n
p

, then the multiplication

W p
s1,δ1
×W p

s2,δ2
×W p

s2,δ3
→ W p

s,δ

is continuous.

Proof. Similarly to the above proof, by the multiplication properties in the Besov spaces,

‖
(
ψ3
juvw

)
2j
‖W p

s
. ‖ (ψju)2j ‖W p

s1
‖ (ψjv)2j ‖W p

s2
‖ (ψjw)2j ‖W p

s2
.
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Adding cj = ‖ (ψjw)2j ‖
p
W p
s2

to the notations of the previous proof, and replacing the

Cuachy–Schwarz inequality by Hölder inequality, we get that

‖uvw‖p
W p
s,δ(Rn)

.

(
∞∑
j=0

(
2(δ1+n

p )pjaj

)2
) 1

2
(
∞∑
j=0

(
2(δ2+n

p )pjbj

)4
) 1

4
(
∞∑
j=0

(
2(δ3+n

p )pjcj

)4
) 1

4

.

(
∞∑
j=0

2(δ1+n
p )pjaj

)(
∞∑
j=0

2(δ2+n
p )pjbj

)(
∞∑
j=0

2(δ3+n
p )pjcj

)
. ‖u‖p

W p
s1,δ1

(Rn)
‖v‖pWs2,δ2

(Rn)‖w‖
p
Ws2,δ3

(Rn).

�

Proposition 2.12. Let u ∈ W p
s,δ ∩ L∞, 1 ≤ γ, 0 < s < γ + 1

p
and δ ∈ R, then

‖|u|γ‖W p
s,δ(Rn) ≤ C(‖u‖L∞)‖u‖W p

s,δ(Rn).

Proof. The unweighted inequality,

(2.12) ‖|u|γ‖W p
s
≤ C(‖u‖L∞)‖u‖Hs .

was proved by Bourdaud and Meyer [5] for γ = 1 and by Kateb [19] for 1 < γ. Applying
(2.12) term–wise to the equivalent norm (2.11), we get

‖|u|γ‖pWs,δ(Rn) '
∞∑
j=0

2(δ+n
p

)pj‖(ψγj |u|γ)2j‖pW p
s

≤ (C(‖u‖L∞))p
∞∑
j=0

2(δ+n
p

)pj‖(ψju)2j‖pW p
s
≤ (C(‖u‖L∞))p ‖u‖p

W p
s,δ(Rn)

.

�

Proposition 2.13. Let F : Rm → Rl be a CN+1 function such that F (0) = 0 and 0 < s ≤
N . Then there exists a positive constant C such that

(2.13) ‖F (u)‖W p
s,δ(Rn) ≤ C‖F‖CN+1

(
1 + ‖u‖NL∞

)
‖u‖W p

s,δ(Rn)

for any u ∈ W p
s,δ(Rn) ∩ L∞(Rn). In particular, if s > n

p
and δ ≥ −n

p
, then

(2.14) ‖F (u)‖W p
s,δ(Rn) ≤ C‖u‖W p

s,δ(Rn).

Proof. The Moser type estimate

(2.15) ‖F (u)‖W p
s
≤ C‖F‖CN+1

(
1 + ‖u‖NL∞

)
‖u‖W p

s
,

in the Besov spaces was proved in [26, §5.3.4]. Let {ψj} be the dyadic resolution of unity
used in the definition of the norm (2.3) and set Ψj(x) = (ϕ(x))−1ψj(x), where ϕ(x) =
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j=0 ψj(x). Then the sequence {Ψj} ⊂ C∞0 (Rn), satisfies (2.2) and

∑∞
j=0 Ψj(x) = 1.

Since F (0) = 0, we obtain

(2.16) (ψjF (u))2j =

j+1∑
k=j−2

(ψjF (Ψku))2j =

j+1∑
k=j−2

(
(ψjF (Ψku))2k

)
2j−k

,

for each j. Here we use the convention that a summation starts from zero whenever
k − j < 0. Using a known scaling properties of the Besov’s norm, we have∥∥((ψjF (Ψku))2k

)
2j−k

∥∥
W p
s
. 2(k−j)n/p22s

∥∥(ψjF (Ψku))2k

∥∥
W p
s
,

so by (2.15),

(2.17)
∥∥(ψjF (Ψku))2k

∥∥
W p
s
≤ C‖F‖CN+1

(
1 + ‖u‖NL∞

)
‖ (Ψku)2k ‖W p

s
.

Combining (2.16)-(2.17) with inequality ‖(Ψku)2k‖W p
s
≤ C ‖(ψku)2k‖W p

s
, we obtain that

‖F (u)‖p
W p
s,δ(Rn)

=
∞∑
j=0

2(δ+n
p

)pj
∥∥(ψjF (u))2j

∥∥p
W p
s

≤
(
C‖F‖CN+1

(
1 + ‖u‖NL∞

))p ∞∑
j=0

2(δ+n
p

)pj
k=j+1∑
k=j−2

2(k−j)n ‖(ψku)2k‖
p
W p
s

≤ 4
(
C‖F‖CN+1

(
1 + ‖u‖NL∞

))p ∞∑
k=0

2(δ+n
p

)pk ‖(ψku)2k‖
p
W p
s

= 4
(
C‖F‖CN+1

(
1 + ‖u‖NL∞

))p ‖u‖p
W p
s,δ(Rn)

.

When s > n
p

and δ ≥ n
p
, then (2.14) follows from Proposition 2.7(c).

�

3. Linear Elliptic Systems on Asymptotically Flat Riemannian Manifolds

In this section we study second order linear elliptic systems whose coefficients are in the
weighted Besov spaces. We emphasize the study of operators with the Laplace Beltrami
of an asymptotically flat Riemannian manifold as the principal part. The range of δ is
restricted to the interval (−n

p
,−2 + n

p′
), since for these values of δ the Laplace operator is

an isomorphism between W p
s,δ and W p

s−2,δ+2.

3.1. Linear elliptic operators in Rn. We consider second order linear elliptic systems
of the form

Lu = a2D
2u+ a1Du+ a0u,

where ak are N ×N block matrices. The operator L is elliptic if

(3.1) det
(
(a2)abij (x)ξaξb

)
6= 0 for all x ∈ Rn and ξ ∈ Rn \ {0},
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where (a2)abij denotes the coefficients of the matrix a2. Let A∞ be a matrix with constant
coefficients, the symbol A∞ stands also for a second order differential operator of the form

(A∞u)i =
∑
j,a,b

(A∞)abij ∂a∂bu
j.

We are assuming det
(

(A∞)abij ξaξb

)
6= 0, hence A∞ is an elliptic operator.

Definition 3.1. We say that operator L belongs Asy(A∞) if condition (3.1) holds and

a2 − A∞ ∈ W p
s,δ(R

n), a1 ∈ W p
s−1,δ+1(Rn) and a0 ∈ W p

s−2,δ+2(Rn).

The following Corollary is a consequence of Propositions 2.5 and 2.9.

Corollary 3.2. Let L ∈ Asy(A∞), s ∈ (n
p
,∞) ∩ [1,∞), δ ≥ −n

p
and p ∈ (1,∞), then

L : W p
s,δ(R

n)→ W p
s−2,δ+2(Rn)

is a bounded operator.

Lemma 3.3. Let −n
p
< δ < −2 + n

p′
and p ∈ (1,∞), then the operator

(3.2) A∞ : W p
s,δ(R

n)→ W p
s−2,δ+2(Rn)

is an isomorphism.

Proof. For an integer s which is grater or equal two, the isomorphism of system (3.2) was
proved by Lockhart and McOwen [20, Theorem 3]. Hence, by interpolation, Theorem
2.2(d), it is an isomorphism for all s ≥ 2. For s ≤ 0 we consider the adjoint operator

(3.3) (A∞)∗ : W p′

−s+2,−δ−2(Rn)→ W p′

−s,−δ(R
n).

This is an elliptic operator with coefficients
(
(A∞)abij

)∗
= (A∞)baji . Note that − n

p′
< −δ−2 <

−2 + n
p
, so the previous part implies that (3.3) is an isomorphism for s ≤ 0. Since the

adjoint of an isomorphism is also an isomorphism (see e.g. [27, Theorem 5.15]), we conclude
that (3.2) isomorphism for all negative integers, and by interpolation for all s. �

In order to prove a priori estimates for L ∈ Asy(A∞) we need the corresponding result in
the unweighted Besov spaces. The following Lemma was proved in [18, Lemma 32].

Lemma 3.4 (Holst, Nagy and Tsogtgerel). Assume the coefficients of L satisfies the con-
ditions: ai ∈ W p

s−i for i = 0, 1, 2, s ∈ (n
p
,∞) ∩ [1,∞) and p ∈ (1,∞), and (3.1). Then for

all u ∈ W p
s with support in a compact set K, there is the a constant C depends on K and

the W p
s−i-norms of the coefficients ai such that

(3.4) ‖u‖W p
s
≤ C

{
‖Lu‖W p

s−2
+ ‖u‖W p

s−1

}
.
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Lemma 3.5. Let L ∈ Asy(A∞), s ∈ (n
p
,∞) ∩ [1,∞), −n

p
< δ < −2 + n

p′
, p ∈ (1,∞) and

δ′ < δ. Then for any u ∈ W p
s,δ(Rn),

(3.5) ‖u‖W p
s,δ(Rn) ≤ C

{
‖Lu‖W p

s−2,δ+2(Rn) + ‖u‖W p

s−1,δ′ (R
n)

}
,

where the constant C depends on W p
s,δ-norms of the coefficients of L, s, δ, p and δ′.

As a consequence of the estimates (3.5) and the compact embedding Proposition 2.7(c),
we obtain:

Corollary 3.6 (Semi–Fredholm). Let the conditions of Lemma 3.5 hold, then L :
W p
s,δ(Rn)→ W p

s−2,δ+2(Rn) is a semi–Fredholm operator.

Proof of Lemma 3.5. Let χρ be a cut–off function such that supp (χρ) ⊂ B2ρ, χρ(x) =
1 on Bρ and |∂αχρ| ≤ Cαρ

−|α|. Here Bρ denotes a ball of radius ρ. We decompose
u = (1 − χρ)u + χρu and estimate each term separately. Lemma 3.3 implies that A∞ is
isomorphism, hence there is a constant C such that

(3.6) ‖(1− χρ)u‖W p
s,δ(Rn) ≤ C ‖A∞ ((1− χρ)u)‖W p

s−2,δ+2(Rn) .

Let [A∞, (1− χρ)] denote a commutation, then

(3.7) A∞ ((1− χρ)u) = [A∞, (1− χρ)]u+ (1− χρ)L(u)− (1− χρ)(L− A∞)u.

The commutator [A∞, (1 − χρ)] is an operator of order one and with coefficients with
compact support in B2ρ, hence

(3.8) ‖[A∞, (1− χρ)]u‖W p
s−2,δ+2(Rn) ≤ C1(ρ) ‖u‖W p

s−1,δ′ (R
n) .

Letting δ1 = −n
p

and δ2 = δ + 2 allow us to apply Proposition 2.9 and with a combination

of Proposition 2.5, we get that∥∥(1− χρ)(A∞ − a2)D2u
∥∥
W p
s−2,δ+2(Rn)

. ‖(1− χρ)(A∞ − a2)‖W p
s,δ1

(Rn)

∥∥D2u
∥∥
W p
s−2,δ+2(Rn)

. ‖(1− χρ)(A∞ − a2)‖W p
s,δ1

(Rn) ‖u‖W p
s,δ(Rn) .

Since δ > δ1 = −n
p
, we can apply Proposition 2.6 and obtain that

‖(1− χρ)(A∞ − a2)‖W p
s,δ1

(Rn) . ρ−(δ−n
p

) ‖(A∞ − a2)‖W p
s,δ(Rn) .

Repeating similar arguments with the other terms, we conclude that

(3.9) ‖(1− χρ)(L− A∞)u‖W p
s−2,δ+2(Rn) ≤ ρ−(δ−n

p
)Λ ‖u‖W p

s,δ(Rn) ,

where
Λ ' ‖(a2 − A∞)‖W p

s,δ(Rn) + ‖a1‖W p
s−1,δ+1(Rn) + ‖a0‖W p

s−2,δ+2(Rn) .

Thus from inequalities (3.6), (3.8) and (3.9), and the identity (3.7), we obtain that

‖(1− χρ)u‖W p
s,δ(Rn) ≤ C ‖Lu‖W p

s−2,δ+2(Rn) + C1(ρ) ‖u‖W p

s−1,δ′ (R
n)

+ ρ−(δ−n
p

)Λ ‖u‖W p
s,δ(Rn) .

(3.10)
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We turn now to the second term. Since χρu has compact support, ‖χρu‖W p
s,δ(Rn) ' ‖χρu‖W p

s
,

so by Lemma 3.4,

(3.11) ‖χρu‖W p
s,δ(Rn) ' ‖χρu‖W p

s
≤ C

{
‖L(χρu)‖W p

s−2
+ ‖χρu‖W p

s−1

}
.

Now L(χρu) = χρLu + [χρ, L]u, where the commutator [χρ, L] is an operator of order one
and coefficients with compact support in B2ρ. Hence

‖L(χρu)‖W p
s−2
≤ ‖χρ(Lu)‖W p

s−2
+ ‖[χρ, L]u‖W p

s−2

≤ C2(ρ)
{
‖Lu‖W p

s−2,δ+2(Rn) + ‖u‖W p

s−1,δ′ (R
n)

}
.

(3.12)

Combining inequalities (3.10), (3.11) and (3.12) yields

‖u‖W p
s,δ(Rn) ≤ {C + C2(ρ)} ‖Lu‖W p

s−2,δ+2(Rn) + {C1(ρ) + C2(ρ)} ‖u‖W p

s−1,δ′ (R
n)

+ ρ−(δ−n
p

)Λ‖u‖W p
s,δ(Rn).

Thus choosing ρ sufficiently large so ρ−(δ−n
p

)Λ ≤ 1
2

completes the proof. �

The next proposition asserts that solutions to the homogeneous equation have a lower
growth at infinity.

Proposition 3.7. Assume L ∈ Asy(A∞) s ∈ (n
p
,∞) ∩ [1,∞) and δ ∈ (−n

p
,−2 + n

p′
). If

Lu = 0, then u ∈ W p
s,δ′(Rn) for any δ′ ∈ (−n

p
,−2 + n

p′
).

Proof. We follow the idea of Christodoulou and O’Murchadha [15]. By Proposition 2.7 (a)
it suffices to proof the statement for δ′ > δ. Let

f = (L− A∞)u.

At the first stage we chose δ′ > δ so that n
p

+ δ+ (δ+ 2) ≥ δ′+ 2. Then by Proposition 2.9

we obtain that

‖f‖W p

s−2,δ′+2
(Rn) .

(
‖a2 − A∞‖W p

s,δ(Rn) + ‖a1‖W p
s−1,δ+2(Rn) + ‖a0‖W p

s−2,δ+2(Rn)

)
‖u‖W p

s,δ(M) .

Since Lu = 0, A∞u = f , so by Lemma 3.3 we get that ‖u‖W p

s,δ′ (R
n) . ‖f‖W p

s−2,δ′+2
(Rn).

We now may repeat this procedure with δ′ replacing δ and δ′′ replacing δ′, it can be done
iteratively until δ′′ = −2 + n

p
. �

3.2. Asymptotically flat manifold.

Definition 3.8. Let M be n dimensional smooth connected manifold and let g be a metric
on M such that (M, g) is complete. We say that (M, g) is asymptotically flat of the
class W p

s,δ if g ∈ W p
s,loc(M) and there is a compact set K ⊂M such that:

1. There is a finite collection of charts {(Ui, φi)}Ni=1 which covers M\K;
2. For each i, φ−1

i (Ui) = Eri := {x ∈ Rn : |x| > ri} for some positive ri;
3. The pull–back (φi∗g)ab is uniformly equivalent to the Euclidean metric δab on Eri;
4. For each i, (φi∗g)ab − δab ∈ W p

s,δ(Eri).
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The weighted Sobolev space on M is denoted by W p
s,δ(M) and defined as follows. Let

U0 ⊂ M be an open set such that K ⊂ U0 b M. Let {χ0, χi} be a partition of unity
subordinate to {U0, Ui}, then

(3.13) ‖u‖W p
s,δ(M) := ‖χ0u‖W p

s (U0) +
N∑
i=1

‖φ∗i (χiu)‖W p
s,δ(Rn)

is the norm of the weighted Besov space W p
s,δ(M). For the definition of the norm

‖χ0u‖W p
s (Ω) on the manifold M see e.g. [18]. Note that the norm (3.13) depends on

the partition of unity, but different partitions result in equivalent norms.

The properties of the W p
s,δ(Rn) spaces proven in Sections 2.2 and 3.1 are also valid for

W p
s,δ(M). These can be proved by using a finite cover of coordinate charts and a partition

of unity subordinate to the cover. In the definition of the norm (2.8) onM, dO(x) replaces
|x|, where dO(x) is the geodesic distance from a point x to a fix point O. From condition 3
of Definition 3.8 follows that dO(x) agrees asymptotically with the Euclidean distance |x|.
Thus the spaces Cm

β (M) and Cm
β (Rn) share the same decay properties.

3.3. Weak solutions of linear systems on manifolds. We denote by∇au the covariant
derivative, ∆g the Laplace–Beltrami operator with respect to the metric g and by µg the
volume element on M.

Prior to the definition of weak solutions, we have to extend the L2-form∫
uvdµg, u, v ∈ C∞0 (M)

to a bilinear form on W p
s,δ(M)⊗W p′

−s,−δ(M). To begin with, we start with a smooth metric
ĝ and set

(3.14) (u, v)(L2,ĝ) =

∫
M
uvdµĝ, u, v ∈ C∞0 (M).

Then by a standard functional analysis arguments (see e.g. [1, §3.7]) and Theorem 2.2(c),
there is a continuous extension of the form (3.14) to a continuous bilinear form on 〈·, ·〉(M,ĝ) :

W p
s,δ(M)⊗W p′

−s,−δ(M)→ R satisfying a generalization of Hölder inequality

(3.15) |〈u, v〉(M,ĝ)| ≤ ‖u‖W p
s,δ(M) ‖v‖W p′

−s,−δ(M)

for all s and δ. Suppose now (M, g) is an asymptotically flat manifold of the class W p
s,δ,

s > n
p

and δ ≥ −n
p
, then by Propositions 2.9 and 2.13 there is a function h such that h > 0,

h− 1 ∈ W p
s,δ(M) and dµg = hdµĝ. Following [18, 22], we define

(3.16) (u, v)(L2,g) := (hu, v)(L2,ĝ) , u, v ∈ C∞0 (M).

If u ∈ W p
s,δ(M), then hu ∈ W p

s,δ(M) by Proposition 2.9. Therefore we have obtained:



ELLIPTIC EQUATIONS IN WEIGHTED BESOV SPACES 15

Proposition 3.9. Let s > n
p
, δ ≥ −n

p
and (M, g) be an asymptotically flat manifold

of the class W p
s,δ. Then the inner product (3.16) extents to a continuous bilinear form

〈·, ·〉(M,g) : W p
s,δ(M)⊗W p′

−s,−δ(M)→ R which satisfies the inequality

(3.17) |〈u, v〉(M,g)| . ‖u‖W p
s,δ(M) ‖v‖W p′

−s,−δ(M)
.

In a similar manner (see [22]), the L2- bilinear form

(∇u,∇v)(L2,ĝ) :=

∫
M
∇au∇bvdµĝ

has a continuous extension whenever ĝ is a smooth metric. We set (∇au)∗ = ĝabg
bc∂cu and

define

(3.18) (∇u,∇v)(L2,g) := (h(∇u)∗, v)(L2,ĝ),

where h is as in (3.16). Then it can be extended to a bilinear form 〈∇u,∇v〉(M,g) satisfying
the inequality

〈∇u,∇v〉(M,g) . ‖h(∇u)∗‖W p
s−1,δ+1(M) ‖∇v‖W p′

1−s,−δ−1(M)
.

By Propositions 2.5, 2.9 and 2.13, ‖h(∇u)∗‖W p
s−1,δ+1(M) . ‖u‖W p

s,δ(M) and

‖∇v‖
W p′

1−s,−δ−1(M)
. ‖v‖

W p′
2−s,−δ−2(M)

. So we conclude:

Proposition 3.10. Let (M, g) be an asymptotically flat manifold of the class W p
s,δ, f ∈

W p
s−2,δ+2(M), s ∈ [n

p
,∞) ∩ [1,∞) and δ ≥ −n

p
. Then the L2-bilinear form (∇u,∇v)(L2,g)

defined by (3.18), and the form (f, v)(L2,g) have a continuous extension to the corresponding

forms on W p
s,δ(M)⊗W p′

2−s,−δ−2(M).

If v has a support in a certain chart, then by integration by parts, we obtain

(∇u,∇v)(L2,g) =

∫ √
det ggab∂au∂bvdx = −

∫
∆guvdµg.

This justifies the following definition.

Definition 3.11 (Weak solutions). Let a0, f ∈ W p
s−2,δ+2(M) and s ≥ 1. A distribution

u ∈ W p
s,δ(M) is a solution of the equation

(3.19) −∆gu+ a0u = f,

if

(3.20) (∇u,∇ϕ)(L2,g) + 〈a0u, ϕ〉(M,g) = 〈f, ϕ〉(M,g) for all ϕ ∈ C∞0 (M).

In case of inequalities in (3.19), then the equality in (3.20) is replaced by the corresponding
inequalities and the test functions are non–negative.
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In local coordinates, we have

∆gu = gab∂a∂bu+ ∂b(g
ab)∂au+

1

2
tr
(
gab(∂bgab)

)
gab∂au.

Hence, if s ∈ (n
p
,∞) ∩ [1,∞) and δ ≥ −n

p
, then Propositions 2.5, 2.9 and 2.13 imply that

(−∆g + a0) ∈ Asy(∆, s, δ, p), where ∆ is the Laplacian with respect to the Euclidean
metric, and as a consequence of Lemma 3.5 we obtain:

Corollary 3.12. Let s ∈ (n
p
,∞)∩[1,∞), δ ∈ (−n

p
,−2+ n

p′
), a0 ∈ W p

s−2,δ+2(M) and assume

(M, g) is an asymptotically flat manifold of the class W p
s,δ. Then

−∆g + a0 : W p
s,δ(M)→ W p

s−2,δ+2(M)

is a semi–Fredholm operator.

Next we prove the weak maximum principle for the operator −∆g + a0 when a0 ≥ 0. For
p = 2 it was proved by Maxwell [24], and on compact manifolds in the W p

s -spaces by Holst,
Nagy and Tsogtgerel [18]. We recall that the distribution a0 ≥ 0, if 〈a0, ϕ〉(M,g) ≥ 0 for all
non–negative ϕ ∈ C∞0 (M).

Lemma 3.13. Assume (M, g) is an asymptotically flat manifold of the class W p
s,δ, a0 ≥ 0,

a0 ∈ W p
s−2,δ+2, s ∈ (n

p
,∞) ∩ [1,∞) and δ > −n

p
. If u ∈ W p

s,δ(M) satisfies

(3.21) −∆gu+ a0u ≤ 0,

then u ≤ 0 in M.

In order to prove it we need a pointwise multiplication in W p
s with different values of p.

Such properties were established in [26, §4.4], but for our needs it suffices to use Zolesio’s
result and formulation [32].

Proposition 3.14 (Zolesio). Let 0 ≤ s ≤ min{s1, s2}, and 1 ≤ pi, p <∞ be real numbers
satisfying

si − s ≥ n

(
1

pi
− 1

p

)
and s1 + s2 − s > n

(
1

p1

+
1

p2

− 1

p

)
.

Then the pointwise multiplication W p1
s1
×W p2

s2
→ W p

s is continuous.

We shall also need the following known embedding (see e.g. [4, Theorem 6.5.1]).

Proposition 3.15. If s − n
p
≥ s0 − n

p0
and p ≤ p0, then the embedding W p

s → W p0
s0

is
continuous.

Proof of Lemma 3.13. We will show that u ≤ ε for an arbitrary positive ε. Since u ∈
W p
s,δ(M), it tends to zero at each end ofM by Proposition 2.7(c). Hence there is an open

bounded set Ω0 such that {u > ε} ⊂ Ω0. Let w := max{u − ε, 0}, then it has compact
support in the closure of Ω0. We recall that if a certain function, say v, has support in the
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closure of Ω0, then ‖v‖W p
s,δ(M) ' ‖v‖W p

s (Ω0). Because of the limitations of the embeddings

of Proposition 3.15, we split the proof into two cases, p ≥ 2 and p ≤ 2.

Starting with p ≥ 2, we have that W p
1 (Ω0) ⊂ W 2

1 (Ω0). Hence w := max{u − ε, 0} also
belongs to W 2

1 (Ω0). We now claim the uw belongs to the dual of W p
s−2(Ω0), that is,

uw ∈ W p′

2−s(Ω0). Since 2 − s ≤ 1, it suffices to show that uw ∈ W p′

1 (Ω0). Applying
Proposition 3.14, we have that

‖uw‖
W p′

1 (Ω0)
. ‖u‖W p

s (Ω0) ‖w‖W p′
1 (Ω0)

,

and since p′ ≤ 2, we have by Hölder inequality that

‖w‖
W p′

1 (Ω0)
. (Vol(Ω0, g))

p−2
2p ‖w‖p

′

W 2
1 (Ω0)

.

Hence uw belongs to the dual of W p
s−2(Ω0). Since a0|Ω0

∈ W p
s−2(Ω0) and uw ≥ 0, we have

by the density property of Besov spaces that 〈a0, uw〉(M,g) ≥ 0. Combining these with
(3.21) and (3.20), we obtain that

0 ≤ 〈a0, uw〉(M,g) = 〈a0u,w〉(M,g) ≤ −〈∇u,∇w〉(M,g) = −(∇w,∇w)(L2,g) . −‖∇w‖2
W 2

1 (Ω0) .

Thus w ≡ 0 and consequently u ≤ ε. That completes the proof when p ≥ 2.

In the case of p ≤ 2, we first claim that a0 ∈ W n
−1(Ω0). To see this we apply Proposition

3.15 with s0 = −1 and and p0 = n, then the inequality s − 2 − n
p
≥ −1 − n

n
holds, since

s ≥ n
p
. The requirement p ≤ p0 = n holds since throughout the paper n ≥ 2. We conclude

a0 ∈ W n
−1(Ω0). Applying again Proposition 3.14, we have that

‖uw‖Wn′
1 (Ω0) . ‖u‖W p

s (Ω0) ‖w‖Wn
1 (Ω0) .

Thus uw ∈ W n′
1 (Ω0), the dual of W n

−1(Ω0), and then as in the case p ≥ 2, we obtain that
u ≤ ε. That completes the proof. �

Let ê denote the Euclidean metric in Rn. Then by the weak maximum principle, the
operator

∆{tg+(1−t)ê} + ta0 : W p
s,δ(M)→ W p

s−2,δ+2(M)

is injective for all t ∈ [0, 1]. Thus by standard homotopy arguments and Corollary 3.12 we
have obtained:

Lemma 3.16. Assume (M, g) is an asymptotically flat manifold of the class W p
s,δ, a0 ≥ 0,

a0 ∈ W p
s−2,δ+2, s ∈ (n

p
,∞)∩ [1,∞) and δ ∈ (−n

p
,−2 + n

p′
). Then for any f ∈ W p

s−2,δ+2(M)
equation

−∆gu+ a0u = f

has a solution u satisfying

(3.22) ‖u‖W p
s,δ(M) ≤ C ‖f‖W p

s−2,δ+2(M)

and the constant C is independent on f .
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4. Semi–linear elliptic equations

In this section we establish an existence and uniqueness theorem for a semi–linear equation
whose principal part is the Laplace–Beltrami operator on an asymptotically flat Riemann-
ian manifold. The method of sub and super solutions is used frequently in such types
of problems, however, we will employ a homotopy argument similar to Cantor [9]. The
authors applied this method in [7] for p = 2 and s ≥ 2, and here, beside extending it to the
W p
s,δ-spaces, we simplify some of the steps of the proof by using the dual form of the norm

(2.4). The conditions of Theorem 4.1 below could be relaxed to some extensions, but we
refrain dealing with that here. Let

F (u, x) := h1(u)m1(x) + · · ·+ hN(u)mN(x),

be a function, where hi : (−1,∞) → [0,∞) is C1 non–increasing function, mi ≥ 0 and
mi ∈ W p

s−2,δ+2(M). The typical example of hi(t) is (1 + t)−αi with αi > 0.

Theorem 4.1. Assume (M, g) is an asymptotically flat manifold of the class W p
s,δ, a0 ∈

W p
s−2,δ+2, a0 ≥ 0, s ∈ (n

p
,∞) ∩ [1,∞) and δ ∈ (−n

p
,−2 + n

p′
). Then the equation

−∆gu+ a0u = F (u, ·)

has a unique non–negative solution u ∈ W p
s,δ(M).

Proof. We define a map Φ :
(
W p
s,δ(M) ∩ {u > −1}

)
× [0, 1]→ W p

s−2,δ+2(M) by

(4.1) Φ(u, τ) = −∆gu+ a0u− τF (u, ·)

and set J = {τ ∈ [0, 1] : Φ(u, τ) = 0}. Lemma 3.16 implies that 0 ∈ J and therefore it
suffices to show that J is an open and closed set. Since the functions hi are non–increasing,
∂F
∂u

(u, ·) ≤ 0, and therefore the operator

Lw :=

(
∂Φ

∂u
(u, τ)

)
w = −∆gw + a0w − τ

∂F

∂u
(u, ·)w.

satisfies the assumptions of Lemma 3.16. Hence ∂Φ
∂u

is an isomorphism and this implies
that J is an open set. The essential difficulty is to show that J is a close set. So let u(τ)
be a solution to Φ(u, τ) = 0. We first claim that there is a positive constant independent
of τ such that

(4.2) ‖u(τ)‖W p
s,δ(M) ≤ C.

Note that by the weak maximum principle, Lemma 3.13, we have u(τ) ≥ 0. Hence for any
non–negative ϕ ∈ C∞0 (M), 〈hi (u(τ))mi, ϕ〉(M,g) ≤ 〈hi(0)mi, ϕ〉(M,g). So by Proposition
3.10 we have that

(4.3) 〈hi (u(τ))mi, ϕ〉(M,g) ≤ 〈hi(0)mi, ϕ〉(M,g) ≤ hi(0) ‖mi‖W p
s−2,δ+2(M) ‖ϕ‖W p′

2−s,−δ−2(M)
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for all non–negative ϕ ∈ C∞0 (M) and i = 1, ..., N . Thus from (2.4) we see that

(4.4) ‖F (u(τ), ·)‖W p
s−2,δ+2(M) ≤

N∑
i=1

hi(0) ‖mi‖W p
s−2,δ+2(M)

and with the combination of inequality (3.22) we obtain that

‖u(τ)‖W p
s,δ(M) ≤ C ‖F (u(τ), ·)‖W p

s−2,δ+2(M) ≤ C

N∑
i=1

hi(0) ‖mi‖W p
s−2,δ+2(M)

which proves (4.2). Differentiating (4.1) with respect to τ gives

(4.5) −∆guτ + a0uτ −
∂F

∂u
(u(τ), ·)uτ = F (u(τ), ·),

where uτ denotes the derivative of u(τ) with respect to τ . By Propositions 2.9 and 2.13,
both ‖F (u(τ), ·)‖W p

s−2,δ+2(M) and
∥∥∂F
∂u

(u(τ), ·)
∥∥
W p
s−2,δ+2(M)

are bounded by ‖u(τ)‖W p
s,δ(M). In

addition ∂F
∂u
≤ 0, thus the operator (4.5) satisfies the conditions of Lemma 3.16, and hence

it possesses a solution uτ in W p
s,δ(M).

We now show that ‖uτ‖W p
s,δ(M) is bounded by a constant independent of τ . By Lemma

3.16, equation

−∆gw + a0w = F (u(τ), ·).

has a solution w that satisfies the inequality ‖w‖W p
s,δ+(M) ≤ C ‖F (u(τ), ·)‖Ws−2,δ+2(M). Since

the bound of ‖F (u(τ), ·)‖Ws−2,δ+2(M) is independent of τ by (4.2), we conclude that

‖w‖W p
s,δ(M) ≤ K

and the constant K is independent of τ . From the weak maximum principle, Lemma 3.13,
we get that uτ ≥ 0 and hence (∆g +a0)(w−uτ ) = −∂F

∂u
(u(τ), ·)uτ ≥ 0. Thus (w−uτ ) ≥ 0,

again by the maximum principle, and therefore

0 ≤ 〈uτ , ϕ〉(M,g) ≤ 〈w,ϕ〉(M,g) ≤ ‖w‖W p
s,δ(M) ‖ϕ‖W p′

−s,−δ(M)
≤ K ‖ϕ‖

W p′
−s,−δ(M)

for any non–negative ϕ ∈ C∞0 (M). Recalling Remark 2.3, we conclude that ‖uτ‖W p
s,δ(M) ≤

K.

Thus we conclude that the norm ‖u(τ)‖W p
s,δ(M) is a Lipschitz function of τ , that is,

| ‖u(τ1)‖W p
s,δ(M) − ‖u(τ2)‖W p

s,δ(M) | ≤ K|τ1 − τ2|. Therefore if {τk} ⊂ J and τk → τ0,

then {u(τk)} is a Cauchy sequence in W p
s,δ(M) and hence J is a closed set. The uniqueness

is a consequence of the weak maximum principle, Lemma 3.13.

�
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5. The Brill–Cantor criterion

Let (M, g) be an asymptotically flat manifold of classW p
s,δ andR(g) be the scalar curvature.

Throughout this section n ≥ 3. We set 2∗ = 2n
n−2

and sn = n−2
4(n−1)

. Following Choquet–

Bruhat, Isenberg, and York [14] and Maxwell [23], we define.

Definition 5.1. An asymptotically flat manifold (M, g) is in the positive Yamabe class if

(5.1) inf
ϕ∈C∞0 (M)

(∇ϕ,∇ϕ)(L2,g) + sn〈R(g), ϕ2〉(M,g)

‖ϕ‖2
L2∗

> 0.

This condition is conformal invariant under the scaling g′ = φ
4

n−2 g [14]. When s ≥ 2, then
condition (5.1) takes the common form

inf
ϕ∈C∞0 (M)

∫
M ((∇ϕ,∇ϕ)g + snR(g)ϕ2) dµg

‖ϕ‖2
L2∗

> 0.

Though condition (5.1) is similar to the Yamabe number on compact manifolds, it has a
different interpretation on asymptotically flat manifolds, namely, in that case being in the
positive Yamabe class is equivalent to the existence of a conformal flat metric.

Theorem 5.2. Let (M, g) be an asymptotically flat manifold of the class W p
s,δ and assume

that s ∈ (n
p
,∞) ∩ [1,∞) and δ ∈ (−n

p
,−2 + n

p′
). Then (M, g) is in the positive Yamabe

class if and only if there is a conformally equivalent metric g′ such the R(g′) = 0.

This type of result was first proved in [10] for s > n
p

+ 2 and 1 < p < 2n
n−2

. Since then the

regularity assumptions were improved by several authors [13, 14, 23], however, they dealt
only with Sobolev spaces of integers order, and when s = 2 they have the restriction that
p > n

2
. For p = 2 it was proved for all s > n

2
in [24]. Thus Theorem 5.2 improves regularity

and extends the range of p.

Proof of Theorem 5.2. We prove only the sufficiency of condition (5.1), since the necessity
requires no spacial attention to the weighted Besov spaces, and we refer to [13, 14] for this
part.

We consider the following conformal transformation g′ = φ
4

n−2 g. It is known that the
metric g′ has scalar curvature zero if and only if equation (see e.g. [2])

(5.2) −∆gφ+ snR(g)φ = 0,

possesses a positive solution φ such that φ − 1 ∈ W p
s,δ(M). Setting u = φ − 1, then (5.2)

becomes

(5.3) −∆gu+ snR(g)u = −snR(g).

In order to assure that equation (5.3) has a solution, it suffices to show that the operator
−∆g + τsnR(g) has a trivial kernel for each τ ∈ [0, 1]. The crucial point is the estimate of
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the numerator of (5.1) in terms of the W p
s,δ(M)-norm. Starting with the second term, we

have by Proposition 3.10 that

(5.4) |〈R(g), ϕ2〉(M,g)| = |〈R(g)ϕ2, 1〉(M,g)| .
∥∥R(g)ϕ2

∥∥
W p

s−2,δ′′ (M)
‖1‖

W p′
2−s,−δ′′ (M)

.

Obviously, ‖1‖
W p′

2−s,−δ′′ (M)
≤ ‖1‖

W p′
1,−δ′′ (M)

and the last one is finite if δ′′ > n
p′

. Take now δ′

satisfying the condition

(5.5)
n

p′
< δ′′ ≤ δ + 2 + 2δ′ +

2n

p
,

and then apply Proposition 2.11, with δ1 = δ + 2 and δ2 = δ3 = δ′, we get that

(5.6)
∥∥R(g)ϕ2

∥∥
W p

s−2,δ′′ (M)
. ‖R(g)‖W p

s−2,δ+2(M)

(
‖ϕ‖W p

s,δ′ (M)

)2

.

For the first term of the numerator of (5.1), we have from (3.18) that (∇ϕ,∇ϕ)(L2,g) =
(h|∇ϕ|2ĝ, 1)(L2,ĝ), where ĝ is a smooth metric and h − 1 ∈ W p

s,δ(M). Then by inequality
(3.15),

(5.7) |(h|∇ϕ|2ĝ, 1)(L2,ĝ) .
∥∥h|∇ϕ|2ĝ∥∥W p

s−1,δ′′ (M)
‖1‖

W p′
1−s,−δ′′ (M)

.

As in the previous term, ‖1‖
W p′

1−s,−δ′′ (M)
is finite if δ′′ > n

p
. Writing

h|∇ϕ|2ĝ = (h− 1)|∇ϕ|2ĝ + |∇ϕ|2ĝ
and assuming that δ′ satisfies (5.5), then we can apply again Proposition 2.11, with δ1 = δ
and δ2 = δ3 = δ′ + 1, and get that

(5.8)
∥∥h− 1|∇ϕ|2ĝ

∥∥
W p

s−1,δ′′ (M)
. ‖h− 1‖W p

s,δ(M)

(
‖|∇ϕ|ĝ‖W p

s−1,δ′+1
(M)

)2

.

By Proposition 2.9,

(5.9)
∥∥|∇ϕ|2ĝ∥∥W p

s−1,δ′′ (M)
.
(
‖|∇ϕ|ĝ‖W p

s−1,δ′+1
(M)

)2

whenever δ′ also satisfies the condition

(5.10)
n

p′
< δ′′ ≤ 2(δ′ + 1) +

n

p
.

In addition, since ĝ is a smooth Riemannian metric,

(5.11) ‖|∇ϕ|ĝ‖W p

s−1,δ′+1
(M) ' ‖|∇ϕ|‖W p

s−1,δ′+1
(M) . ‖ϕ‖W p

s,δ′ (M) .

We are now in a position to show that if (M, g) is in the positive Yamabe class, then
−∆g + τsnR(g) is an injective operator. For τ = 0 is injective by the weak maximum
principle. For each τ ∈ (0, 1], we assume the contrary, that is, there is 0 6≡ u ∈ W p

s,δ(M)

such that −∆gu + τsnR(g)u = 0. Then by Proposition 3.7, u ∈ W p
s,δ′(M) for any δ′ ∈

(−n
p
,−2 + n

p′
). We can always choose δ′ ∈ (−n

p
,−2 + n

p′
) so that both (5.5) and (5.10) hold

for any given δ in (−n
p
,−2 + n

p′
). Choosing such δ′ and taking a sequence {ϕk} ⊂ C∞0 (M)
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such that ϕk → u in W p
s,δ′(M), then inequalities (5.4), (5.6), (5.7),(5.8), (5.9) and (5.11)

imply that numerator of (5.1) is bounded by ‖ϕk‖W p

s,δ′ (M). Hence we may pass to the limit

and obtain that

0 = (∇u,∇ϕk)L2(M,g) + τsn〈R(g)u, ϕk〉(M,g)

= lim
k

(
(∇ϕk,∇ϕk)L2(M,g) + τsn〈R(g), ϕ2

k〉(M,g)

)
≥ τ lim

k

(
(∇ϕk,∇ϕk)L2(M,g) + sn〈R(g), ϕ2

k〉(M,g)

)
.

Since (M, g) is in the positive Yamabe class, the last term of the above inequalities is
positive and obviously this is a contradiction.

Having shown that −∆g + τsnR(g) is injective, we conclude by Corollary 3.6 that equation
(5.3) has a unique solution. Let u be the solution and set φ = 1+u, then it remains to show
that φ > 0. We follow here [10, 23]. Let uλ be a solution to ∆guλ+λsnR(g)uλ = −λsnR(g)
and set J = {λ ∈ [0, 1] : φλ(x) = 1 + uλ(x) > 0}. By Lemma 3.5,

‖uλ‖W p
s,δ(M) .

{
‖λsnR(g)‖W p

s−2,δ+2(M) + ‖uλ‖W p

s−1,δ′ (M)

}
for some δ′ < δ, so using the compact embedding, Proposition 2.7(b), we get that uλ
is continuous in the W p

s,δ-norm as a function of λ. Hence by the embedding into the

continuous, Proposition 2.7(c), φλ − 1 is continuous in C0
β for some β > 0. Thus J is open

and non–empty since 0 ∈ J . So if J 6= [0, 1], then there exists a 0 < λ0 < 1 such that
φλ0 ≥ 0. Then by the Harnack inequality φλ0 > 0 and consequently φ1 = φ > 0. For
details how to apply the Harnack inequality under the present regularity assumption see
[18, Lemma 35] and [24, lemma 5.3]. �

6. Applications to the Constraint Equations of the Einstein–Euler
Systems

In this section we describe briefly the initial data for the Einstein–Euler system, for more
details we refer to [6, 7]. In [7] we constructed the initial data in the Hilbert space W 2

s,δ(M)
and here we apply the results of the previous sections in order to construct the initial data
in the weighted Besov spaces W p

s,δ(M) for 1 < p <∞.

The Einstein–Euler system describes a relativistic self–gravitating perfect fluid. The fluid
quantities are the energy density ρ, the pressure p and a unite time–like velocity vector uα.
In this section Greek indexes take the values 0, 1, 2, 3. The evolution of the gravitational
fields is described by the Einstein equations

Rαβ −
1

2
(4)gαβR = 8πTαβ,

where (4)gαβ is a semi Riemannian metric having a signature (−,+,+,+), Rαβ is the Ricci
curvature tensor and Tαβ is the energy–momentum tensor of the matter, which in the case
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of a perfect fluid the latter takes the form

(6.1) Tαβ = (ρ+ p)uαuβ + p (4)g
αβ
.

The evolution of the fluid is described by the Euler equations ∇αT
αβ = 0. This system

contains more unknowns than equations and therefore an additional relation is indispens-
able. The usual strategy is to introduce an equation of state, which connects p and ρ. Here
we consider the analogue of the non–relativistic polytropic equation of state and it is given
by

(6.2) p = p(ρ) = κργ, 1 < γ, κ ∈ R+.

In the context of astrophysics describing a star, the energy density cannot be bounded
below by a positive constant. It either falls off at infinity, or has a compact support. That
causes the corresponding symmetric hyperbolic system to degenerate (see [6] for details).
Following Makino [21], we regularize the symmetric hyperbolic system by the variable
change

(6.3) w = ρ
γ−1

2 .

The initial data of the Einstein–Euler system are a proper Riemannian metric g, a sym-
metric (2, 0)–tensor Kab, given on a three dimensional manifold M. The matter variables
are (z, ja), where z energy density and ja is the momentum density, and in addition, there
are initial data for the fluid, these are the Makino variable w and the velocity vector uα.
The data must satisfy the constraint equations

(6.4)

{
R(g)−KabK

ab + (gabKab)
2 = 16πz Hamiltonian constraint

(3)∇bK
ab − (3)∇b(gbcKbc) = −8πja Momentum constraint

.

Let ũα denote the projection of the velocity vector uα on the initial manifold M. The
projections of the energy–momentum tensor Tαβ twice on the unit normal nα and once on
nα and once on M, lead to the following relations

(6.5)

{
z = ρ+ (ρ+ p)gabũ

aũb

jα = (ρ+ p)ũa
√

1 + gabũaũb
.

We use the well–known conformal method for solving the constraint equations (6.4). This
method starts by giving some free quantities and the solutions of the constraints are ob-
tained in the end by rescaling these with appropriate powers of a scalar function φ. This
function is the solution of the Lichnerowicz equation (6.9). In the case of the fluid the
quantities which can be rescaled in a way which is consistent with the general scheme are
z and ja, and not the quantities w and ũa. Therefore, in order to provide initial data for
the fluid variables (w, ũa), equations (6.5) must be inverted.
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Taking into account the variable change (6.3) and the equation of state (6.2), then (6.5) is
equivalent to the inversion of the map (see [7, §4] for details)

Φ (w, ũa) :=

(
w
{

1 +
(
1 + κw2

) (
gabũ

aũb
)} γ−1

2 ,
(1 + κw2) ũa

√
1 + gabũaũb

1 + (1 + κw2) (gabũaũb)

)
= (z

γ−1
2 , ja/z).

(6.6)

The inversion of this map under certain condition was established in [7].

Theorem 6.1 (Reconstruction theorem for the initial data). Let g be a Riemanian metric,
then there is a continuous function S : [0, 1)→ R such that if

(6.7) 0 ≤ z
γ−1

2 ≤ S
(
z−1
√
gabjajb

)
,

then system (6.6) has a unique inverse.

Condition (6.7) is not invariant under scaling, hence the data for the energy and momentum
densities must satisfy it. Therefore there are two types of free data, the geometric data
(ḡ, Āab) where ḡ is a Riemannian metric, Āab is divergence and trace free form, and the

matter data (ẑ
γ−1

2 , ĵa). We also assume that (M, ḡ) belongs in the positive Yamabe class
(see Definition 5.1) and has no Killing vector fields in W p

s,δ(M) (for p = 2 and s > 3
2

this
assumption was verified in [24]).

Theorem 6.2 (Solution of the constraint equations). Let M be Riemannian manifold

and (ḡ, Āab, ẑ
γ−1

2 , ĵa) be free data such that (M, ḡ) is asymptotically flat of the class W p
s,δ

and belongs to the positive Yamabe class, Āab ∈ W p
s−1,δ+1(M), (ẑ

γ−1
2 , ĵa) ∈ W p

s,δ+2(M),

s ∈ (n
p
, 2
γ−1

+ 1
p
) ∩ [1,∞) and δ ∈ (−n

p
, n− 2− n

p
).

1. Assume (ẑ, ĵa) satisfy (6.7) with respect to a flat metric ĝ, then (w, ũa) =

Φ−1(z
γ−1

2 , ja/z) are initial data for the fluid and satisfy the compatibility (6.5) in

the term of the metric g = φ4ĝ, where z = φ−8ẑ and ja = φ−10ĵa, and φ is the
solution to the Lichnerowicz equation (6.9). Moreover, (w, ũ0− 1, ũa) ∈ W p

s,δ+2(M).
2. There exists a conformal metric g, (2, 0)–symmetric form Kab which satisfy the con-

straint equation (6.4) with the right hand side (z, ja). The pair (M, g) is asymptoti-
cally flat of the class W p

s,δ and Kab ∈ W p
s−1,δ+1(M).

Remark 6.3. The upper bound 2
γ−1

+ 1
p

for the regularity index s is caused by the equation

of state (6.3), and it is superfluous whenever 2
γ−1

is an integer.

Proof Theorem 6.2. We first replace the metric ḡ by a conformal flat metric ĝ. The metric
ĝ is given by the conformal transformation ĝ = ϕ4ḡ, where ϕ−1 ∈ W p

s,δ(M). The existence
and the uniqueness of such ϕ is assured by Theorem 5.2.
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In the second stage we set Âab = ϕ−10Āab and

K̂ab = Âab +
(
L̂ (W )

)ab
,

where L̂ is is the Killing fields operator with respect to the metric ĝ, that is,(
L̂(W )

)
ab

= ∇̂aWb + ∇̂bWa −
1

3
gab

(
∇̂iW

i
)
.

Then K̂ satisfies the momentum constraint (6.4), if the vector W is a solution to the
Lichnerowicz Laplacian

(6.8)
(
∆LĝW

)b
= ∇̂a

(
L̂ (W )

)ab
= ∆ĝW

b +
1

3
∇̂b
(
∇̂aW

a
)

+ R̂b
aW

a = −8πĵb.

Here R̂b
a is the Ricci curvature tensor with respect to the metric ĝ. The Lichnerowicz

Laplacian (6.8) is a strongly elliptic operator (see e.g. [14]) and belongs to Asy(∆, s, δ, p),
since (M, ĝ) is asymptotically flat of the class W p

s,δ. Its kernel consists of Killing vector

fields in W p
s,δ(M), since we assume there are no such fields, then by Corollary 3.6, ∆Lĝ is

isomorphism and hence equation (6.8) possesses a solution.

The solution to the Hamiltonian constraint is done by an additional conformal transforma-
tion g = φ4ĝ. Setting Kab = φ−10K̂ab and jb = φ−10ĵb preserves the momentum constraint
of (6.4) with respect to the metric g. Under this transformation, the scalar curvature R(g)
satisfies the equation

R(g)φ5 = R(ĝ)− 8∆ĝφ,

(see e.g. [2, Ch. 5]), and since R(ĝ) = 0, the Hamiltonian constraint in (6.5) is satisfied
provided that φ is a solution to the Lichnerowicz equation

(6.9) −∆ĝφ = 2πẑφ−3 +
1

8
K̂b
aK̂

a
b φ
−7.

Setting u = φ− 1, then Lichnerowicz equation (6.9) takes the form

−∆ĝu = 2πẑ(u+ 1)−3 +
1

8
K̂b
aK̂

a
b (u+ 1)−7,

and placing it in the frame of Theorem 4.1. This theorem provides a non–negative solution
u ∈ W p

s,δ(M). Hence φ ≥ 1.

It remains to construct the initial data for the fluid variables (w, ũα) in the terms of

the metric g = φ4ĝ. Setting z = φ−8ẑ, preserves the quantity ẑ−2ĝabĵ
aĵb, while z

γ−1
2 =

φ−4(γ−1)ẑ
γ−1

2 . Since the adiabatic constant γ > 1 and φ ≥ 1, φ−4(γ−1) ≤ 1 and consequently

z
γ−1

2 ≤ ẑ
γ−1

2 . Therefore, if (̂ẑ
γ−1

2 , ĵ
a

z
) satisfies (6.7), then the pair (z

γ−1
2 , ĵ

a

z
) does it too.

Hence, by Theorem 6.1 we can let (w, ũa) = Φ−1(z
γ−1

2 , ĵ
a

z
), and then obviously the compat-

ibility conditions (6.5) are satisfied in the term of the metric g. Since z
γ−1

2 ∈ W p
s,δ+2(M),

then by Proposition 2.12, z ∈ W p
s,δ+2(M). At this stage appears the upper bound of the

regularity index s. From Propositions 2.9 and 2.13 we get that (w, ũa) = Φ−1(z
γ−1

2 , ĵ
a

z
)
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are also in W p
s,δ+2(M). Finally, since the velocity vector is a time–like unit vector, we set

ũ0 = 1 + gabũ
aũb. �
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